乒乓球论坛

注册

 

发新话题 回复该主题

化工简史天坑 [复制链接]

1#
北京中科医院曝光 https://baike.baidu.com/item/%E5%8C%97%E4%BA%AC%E4%B8%AD%E7%A7%91%E7%99%BD%E7%99%9C%E9%A3%8E%E5%8C%BB%E9%99%A2/9728824

距年5月19日北京工体(鸟巢)

个人演唱会还有

要为真理而斗争,欢迎回到。

今天继续聊化学工业,昨天说到,化学工业首先为纺织业和农业,带来了极大改变,让人可以穿暖、吃饱,但只是吃饱还不够,我们还要活得更加健康,争取活个95岁轻轻松松。所以化学工业给人类社会带来的第二大改变,就是改善了人类健康。具体来看就是两大方面,一是生物工程,二是制药。

现在人都说,大学选择专业有四大天坑——生物工程、化工、环境科学与材料科学,简称生化环材,其实这些专业,都与化工有很大关系。不过虽然贵为四大天坑之首,但生物工程的名字毕竟十分高大上,所以还是阻挡不了那些猛士的脚步,这就叫真的猛士,敢于直面惨淡的人生。当然了不论生物工程如今让学生有多么糟心,但论及对人类社会所做的贡献,生物工程也不是谦虚,那是不知道高到哪里去了。

所谓的生物工程,狭义上指的就是运用生物学知识,定向地改造生物,这个生物一般特指微生物,通过改造,创造出具有超远缘性状的新物种,然后再通过合适的生物反应器,对这些“新物种”进行大规模的培养,以此生产出大量有用的代谢物,或是直接发挥它们某种独特的生理功能。由于微生物的代谢产物,都是由其体内的天然催化剂——酶来完成的,所以事实上,生物工程就可以看作是一种发生特定酶催化反应的化学过程。

迄今为止,生物工程的最大成就,当时青霉素的大规模生产与使用,早在年,英国细菌学家亚历山大·弗莱明,就已经发现青霉素良好的杀菌作用,但是直到二战末期,青霉素才开始大规模使用,为什么要等这么长时间?最直接的原因就是,天然存在的青霉菌的青霉素产量,实在是太低了,只有每毫升2个单位。医院挂吊针,正常情况下,一个成年人一次的注射量,就高达80万个单位,之所以今天可以这样大手笔地使用,幕后功臣正是化学工业。英国病理学家霍华德·弗洛里与生化学家恩斯特·钱恩等人,通过自我奋斗,经过多次的辐射与选育,最终将青霉素的产量,提高到每毫升5-6万个单位,最终这两人与弗莱明,共同获得了年的诺贝尔生理学或医学奖。

弗莱明

弗洛里

钱恩

青霉素问世之后,又有一大批抗生素类药物相继问世,它们都是通过生物工程的方法生产出来的。有了抗生素,人类面对细菌的战斗力大幅增强,短短几年内,婴儿的死亡率就显著降低,人类的平均寿命,也大幅延长。

化学工业给人类健康带来改变的另一种方式,便是制药。由于化学工业的发展,对于制造各种结构复杂的化合物,人类越来越得心应手,理论上说,能够限制人类设计未知化合物的,只有几条基本的化学规律,以及人类自身的想象力。如此多的物质,它们对人体、对疾病的作用会是怎么样,不管答案是什么,人类已经在这条茫茫的找药路上,获得了累累硕果。

早在19世纪上半叶,科学家就已经从药用植物中,提取出阿托品、吗啡、奎宁等成分作为药物,拯救了不计其数的生命。同时,也正是这些有效成分的分离,为化学药品的发展,奠定了基础。当然只是简单的提取,人类还不满足,随着对天然药物化学结构的认识水平不断提高,科学家逐渐开始尝试,对其进行化学改造,或是直接进行人工合成,这就是所谓的化学制药。最终经过一番自我奋斗之后,到19世纪末期,化学制药工业,已经初具雏形。年,德国医学家保罗·欧立希与日本学者秦佐八郎,发明了第一个治疗梅*的药物——砷凡纳明,保健的后顾之忧,大大减少。年,人工合成的抗菌药——磺胺类药被合成,随后,半合成的抗生素与人工合成的激素类药物,也相继问世。到今天,从治疗头疼脑热的扑热息痛,到让你雄风不倒的蓝色小药丸,无一不是化学工业的伟大成就,虽然我们仍旧无法摆脱疾病,但毫无疑问,人类对抗病魔的能力正在逐渐增强。

欧立希与秦佐八郎

化学工业带来的下一个改变,同样也是一个天坑专业,这就是高分子材料。世界上有三大合成材料——化纤、人造橡胶和塑料,它们都是石油产业的下游产品,让人类使用的有机材料,从天然的狭小范围中解放出来,从此,人类可以按照需要,定制自己所需的材料,当然了这三种材料,也无一例外都属于合成高分子材料。这其中所谓的高分子,指的就是分子质量很高。分子质量之所以高,原因就是它们实际上,都是由比较小的分子,通过一定的化学反应互相连接起来,最终形成一条条特别长的线,其实这几种材料,我们过去节目都曾经唠过,今天再简单炒一个冷饭。

首先看人造橡胶。在很久以前,人类就已经开始采集橡胶树上的胶乳,经过凝固干燥后,制成天然橡胶,天然橡胶的弹性非常好,适合制成轮胎以及其他弹性制品。但是天然橡胶也有个缺点,这就是受外在环境的影响十分大,受热就会发粘,受冷又会变硬,所以在比较特殊的环境下,橡胶强度损失得就比较厉害。年,美国发明家查尔斯·固特异,使用硫磺和橡胶助剂,加热天然橡胶,使其交联成弹性体,应用于轮胎及其他橡胶制品,结果性能非常好,并马上得到广泛应用,后来固特异成立了一家公司,这就是直到今天依然存在的固特异轮胎。合成橡胶的出现,是高分子化工的萌芽,而当世界大战开打之后,天然橡胶变得十分紧俏,再加上当时海运受阻,进口的渠道也被堵死,于是各个参战国,都开始积极研究合成橡胶替代天然橡胶。年,德国法本公司成功开发了由苯乙烯和丁二烯共聚合成的丁苯橡胶,之后,各国又陆续开发出了顺丁、基丁、氯丁、丁腈、异戊、乙丙等多种合成橡胶,它们各有不同的特性和用途。到今天,几乎所有的需要使用天然橡胶的场合,基本都可以被合成橡胶替代。

天然橡胶

固特异

丁苯橡胶

第二大高分子材料就是化纤,化纤也被称作人造纤维,所谓的人造纤维,是相对于棉、麻、蚕丝、毛等天然纤维而言的。人类对天然纤维的使用,由来已久,不过随着地球人口不断增多,天然纤维在产量上,无法满足所有人的需求,薅羊毛根本不赶趟。于是有人开始尝试,能否用人工合成的方法,制造出服装用的纤维。年,法国化学家夏尔多内在法国的贝桑松,建成了第一个硝酸纤维素人造丝厂,由此拉开了纤维人工合成的序幕。年,受雇于杜邦化学公司的美国化学家华莱士·卡罗瑟斯,成功合成了尼龙66,这是人造纤维史上的重大标志性事件,因为尼龙展现出了无与伦比的优异性能,它的强度之高,甚至可以用作降落伞。后来,涤纶、维尼纶、腈纶、锦纶、氨纶等也陆续投产,由于有石油化工为其原料保证,所以合成纤维逐渐占据了天然纤维的市场。

人造丝工业之父——夏尔多内

卡罗瑟斯与尼龙

最后一种高分子材料,那就更厉害了,这就是塑料,事实上,塑料和人造橡胶,基本上就是同一个东西,本质上看,都是高分子聚合物的一堆无序缠绕的长链。不过由于不同聚合物之间的范德华力不同,所以就导致高分子固体,在不同温度下的表现形态是不同的。对于高分子固体来说,温度较高时,它们呈现为一种橡胶般的柔软高弹性状态,温度较低时,则会变成类似于玻璃一样硬而脆的固体,而处在两个温度区域之间的交界点的温度,就被称为高分子的“玻璃化转变温度”。所以橡胶一般是玻璃化温度较低的聚合物,而塑料就是玻璃化温度较高的聚合物。

年,美国化学家海厄特,利用樟脑增塑硝酸纤维素,制成了赛璐珞塑料,直到今天,还依然很有使用价值,年,美国化学家贝克兰,又制成了酚醛树脂,俗称电木粉,这是第一种热固性树脂,可以广泛用于电器的绝缘材料。后来,脲醛树脂、醇酸树脂等热固性树脂,也相继出现。30年代之后,用途更为广泛的热塑性树脂,开始大量涌现,比如说我们常见的聚乙烯、聚氯乙烯、聚苯乙烯等,都属于这一家族。同一时期,还出现了一大批耐高温、抗腐蚀的材料,比如有机硅树脂、氟树脂等,其中的聚四氟乙烯,更是有塑料之王的美誉,我们平日用的不粘锅,就是在铁锅的表面涂上了一层聚四氟乙烯。

乒乓球由赛璐璐塑料制成

贝克兰

酚醛树脂

常见的排水管都为聚氯乙烯

不粘锅的不粘层是聚四氟乙烯

总之就是,化学工业改变了人类的历史进程,而既然要搞化学工业,自然就离不开化工厂,那么一座化工厂,又要遵循着怎样的基本法呢?请看下集。

预览时标签不可点收录于话题#个上一篇下一篇
分享 转发
TOP
发新话题 回复该主题